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1. Introduction

The attractor phenomenon for extremal black holes has been the subject of considerable in-

vestigation. For BPS black holes in N = 2 theories this phenomenon was first studied in [1]

and thereafter discussed in [2 – 10]. It has received further attention recently due to the con-

jecture of [11] and related developments [12 – 16]. For non-supersymmetric extremal black

holes, some aspects of the attractor phenomenon were discussed in [7] and [8]. More recently

this has been investigated in [17] and [18 – 22]. For important related work see [23, 24].

In supersymmetric black holes, the central charge, which is a function of the moduli

and the charges carried by the black hole, plays an important role in the discussion of

the attractor. The attractor values of the scalars, which are obtained at the horizon of

the black hole, are given by minimising the central charge with respect to the moduli. In

the non-supersymmetric case one constructs an effective potential which is a function of

the moduli and charges. The attractor values are then given by minimising this effective

potential with respect to the moduli.

There is a another sense in which the central charge is also minimised at the horizon of a

supersymmetric attractor. One finds that the central charge, now regarded as a function of

the position coordinate, evolves monotonically from asymptotic infinity to the horizon and

obtains its minimum value at the horizon of the black hole. It is natural to ask whether

there is an analogous quantity in the non-supersymmetric case and in particular if the

effective potential is also monotonic and minimised in this sense for non-supersymmetric

attractors.
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This paper addresses this question. We present a c-function for non-supersymmetric

attractors here. We first study the four dimensional case. The c-function has a simple

geometrical and physical interpretation in this case. We are interested in spherically sym-

metric and static configurations in which all fields are functions of only one variable - the

radial coordinate. The c-function, c(r), is given by

c(r) =
1

4
A(r), (1.1)

where A(r) is the area of the two-sphere, of the SO(3) isometry group orbit, as a function of

the radial coordinate.1 For any asymptotically flat solution we show that the area function

satisfies a c-theorem and monotonically decreases as one moves inwards from infinity. For

a black hole solution, the static region ends at the horizon, so in the static region the

c-function attains its minimum value at the horizon. This horizon value of the c-function

equals the entropy of the black hole. While the horizon value of the c-function is also

proportional to the minimum value of the effective potential, more generally, away from

the horizon, the two are different. In fact we find that the effective potential need not vary

monotonically in a non-supersymmetric attractor. The c-theorem we prove is applicable for

supersymmetric black holes as well. In the supersymmetric case, there are three quantities

of interest, the c-function, the effective potential and the square of the central charge. At

the horizon these are all equal, up to a constant of proportionality. But away from the

horizon they are in general different.

We work directly with the second order equations of motion in our analysis and it

might seem puzzling at first that one can prove a c-theorem at all. The answer to the

puzzle lies in boundary conditions. For black hole solutions we require that the solutions are

asymptotically flat. This is enough to ensure that going inwards from asymptotic infinity

the c-function decreases monotonically. Without imposing any boundary conditions one

cannot prove the c-theorem, as one might expect. But one can show that in the absence

of singularities, c can have at most one critical point.

While non-supersymmetric attractors were our primary motivation, the c-theorem is in

fact valid for all static, spherically symmetric, asymptotically flat, solutions to the equations

of motion.2 For example, the proof applies also to non-extremal black holes. Once again

the Area function must decreases monotonically and its minimum value at the horizon is

the entropy.

In our discussion we focus on a system consisting of 4-dimensional gravity coupled to

gauge fields and moduli. But in fact the results are more general. The c-theorem is valid

for any matter fields which satisfy the null energy condition. This says that,

Tµνζ
µζν

> 0, (1.2)

for any null vector ζ. As long as this energy condition is met and we have a static,

spherically symmetric solution that is asymptotically flat, the area function monotonically

1We have set GN = 1.
2Also there the spacetime region under consideration must be singularity free.
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decreases, moving in from infinity. The importance of the null energy condition in the

proof of a c-theorem was recognised in [25].

One can show that the proof of the c-theorem follows in a straightforward manner

from the Raychaudhuri equation and the energy condition, eq. (1.2). By considering a

congruence of radially infalling null geodesics one can see that the area A(r) must decrease

as one moves inwards from asymptotic infinity. Our focus here is on spherically symmetric

configurations, but these comments suggest that a similar c-theorem can be devised more

generally as well.

In the latter part of this paper we consider generalisations to higher dimensions. We

analyse a system of rank q gauge fields and moduli coupled to gravity and once again

find a c-function that satisfies a c-theorem. In D = p + q + 1 dimensions this system has

extremal black brane solutions whose near horizon geometry is AdSp+1×Sq. We show that

the c-function is non-increasing from infinity up to the near horizon region. It’s minimum

value in the AdSp+1 × Sq region agrees with the conformal anomaly in the dual boundary

theory for p even. A c-function in AdS space was considered before in [25, 26] and our

construction makes important use of the analysis and results contained therein.

In fact, in the higher dimensional case as well, the c-theorem we prove is more general.

It applies to all solutions which have a SO(q) × P symmetry, where P is the Poincaré

group in p + 1 dimensions, as long as suitable boundary conditions are imposed. Both

asymptotically flat and asymptotically AdS boundary conditions lead to monotonicity.

And both extremal and non-extremal black brane solutions are examples which satisfy the

conditions for the c-theorem. Also, the c-theorem works for other kinds of matter we well,

as long as the null energy condition holds.

This paper is structured as follows. In section 2, we discuss some background material.

Section 3, discusses the c-theorem in 4 dimensions and section 4, the higher dimensional

case. Three appendices contain important details.

2. Background

We begin with some background related to the discussion of non-supersymmetric attractors.

Consider a theory consisting of four dimensional gravity coupled to U(1) gauge fields

and moduli, whose bosonic terms have the form,

S =
1

κ2

∫

d4x
√
−G(R − 2gij(∂φi)(∂φj) − fab(φ

i)F a
µνF b µν − 1

2
f̃ab(φ

i)F a
µνF b

ρσεµνρσ). (2.1)

F a
µν , a = 0, . . . N are gauge fields. φi, i = 1, . . . n are scalar fields. The scalars have no

potential term but determine the gauge coupling constants. We note that gij refers to the

metric in the moduli space, this is different from the spacetime metric, Gµν .

A spherically symmetric space-time metric in 3 + 1 dimensions takes the form,

ds2 = −a(r)2dt2 + a(r)−2dr2 + b(r)2dΩ2 (2.2)
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The Bianchi identity and equation of motion for the gauge fields can be solved by a

field strength of the form,

F a = fab(Qeb − f̃bcQ
c
m)

1

b2
dt ∧ dr + Qa

msinθdθ ∧ dφ, (2.3)

where Qa
m, Qea are constants that determine the magnetic and electric charges carried by

the gauge field F a, and fab is the inverse of fab.

The effective potential Veff is then given by,

Veff(φi) = fab(Qea − f̃acQ
c
m)(Qeb − f̃bdQ

d
m) + fabQ

a
mQb

m. (2.4)

For the attractor mechanism it is sufficient that two conditions to be met. First, for

fixed charges, as a function of the moduli, Veff must have a critical point. Denoting the

critical values for the scalars as φi = φi
0 we have,

∂iVeff(φi
0) = 0. (2.5)

Second, the effective potential must be a minimum at this critical point. I.e. the matrix

of second derivatives of the potential at the critical point,

Mij =
1

2
∂i∂jVeff(φi

0) (2.6)

should have positive eigenvalues. Schematically we can write,

Mij > 0. (2.7)

As discussed in [21], it is possible that some eigenvalues of Mij vanish. In this case the

leading correction to the effective potential along the zero mode directions should be such

that the critical point is a minimum. Thus, an attractor would result if the leading cor-

rection is a quartic term, Veff = Veff(φi
0) + λ(φ − φH)4, with λ > 0 but not if it is a cubic

term, Veff = Veff(φi
0) + λ(φ − φH)3.

Once the two conditions mentioned above are met it was argued in [18] that the

attractor mechanism works. There is an extremal Reissner Nordstrom black hole solution

in the theory, where the black hole carries the charges specified by the parameters, Qa
m, Qea

and the moduli take the critical values, φ0 at infinity. For small enough deviations at infinity

of the moduli from these values, a double-horizon extremal black hole solution continues to

exist. In this extremal black hole the scalars take the same fixed values, φ0, at the horizon

independent of their values at infinity. The resulting horizon radius is given by,

b2
H = Veff(φi

0) (2.8)

and the entropy is

SBH =
1

4
A = πb2

H . (2.9)

In N = 2 supersymmetric theory, Veff can be expressed, [7], in terms of a Kahler

potential, K and a superpotential, W as,

Veff = eK [gij̄∇iW (∇jW )∗ + |W |2], (2.10)
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where ∇iW ≡ ∂iW + ∂iKW . The Kahler potential and Superpotential in turn can be

expressed in terms of a prepotential F , as,

K = − ln Im

(
N∑

a=0

Xa∗∂aF (X)

)

, (2.11)

and,

W = qaX
a − pa∂aF, (2.12)

respectively. Here, Xa, a = 0, . . . N are special coordinates to describe the special geometry

of the vector multiplet moduli space. And qa, p
a are the electric and magnetic charges

carried by the black hole.3

For a BPS black hole, the central charge given by,

Z = eK/2W, (2.13)

is minimised, i.e., ∇iZ = ∂iZ + 1
2∂iKZ = 0. This condition is equivalent to,

∇iW = 0. (2.14)

The resulting entropy is given by

SBH = πeK |W |2. (2.15)

with the Kahler potential and superpotential evaluated at the attractor values.

3. The c-function in 4 dimensions

3.1 The c-function

The equations of motion which follow from eq. (2.1) take the form,

Rµν − 2gij∂µφi∂νφj = fab

(

2F a
µλF b λ

ν − 1

2
GµνF a

κλF bκλ

)

1√
−G

∂µ

(√
−Ggij∂

µφj
)

=
1

4
∂i(fab)F

a
µνF bµν

+
1

8
∂i(f̃ab)F

a
µνF b

ρσεµνρσ

∂µ

(√
−G(fabF

bµν +
1

2
f̃abF

b
ρσεµνρσ)

)

= 0. (3.1)

We are interested in static, spherically symmetric solutions to the equations of motion.

The metric and gauge fields in such a solution take the form, eq. (2.2), eq. (2.3). We will

be interested in asymptotically flat solutions below. For these the radial coordinate r in

eq. (2.2) can be chosen so that r → ∞ is the asymptotically flat region.

3These can be related to Qea, Qa
m, using eq. (2.3).
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The scalar fields are a function of the radial coordinate alone, and substituting for the

gauge fields from, eq. (2.3), the equation of motion for the scalar fields take the form,

∂r(a
2b2gij∂rφ

j) =
∂iVeff

2b2
, (3.2)

where Veff is defined in eq. (2.4).

The Einstein equation for the rr component takes the form of an “energy constraint”,

−1 + a2b
′2 +

a2′b2′

2
=

−1

b2
(Veff(φi)) + a2b2gij(∂rφ

i)∂rφ
j (3.3)

Of particular relevance for the present discussion is the equation obtained for Rrr −
Gtt

Grr Rtt component of the Einstein equation. From eq. (3.1), this is,

b(r)
′′

b(r)
= −gij∂rφ

i∂rφ
j. (3.4)

Here prime denotes derivative with respect to the radial coordinate r.

Our claim is that the c-function is given by,

c =
1

4
A(r), (3.5)

where A(r) is the area of the two-sphere defined by constant t and r,

A(r) = πb2(r). (3.6)

We show below that in any static, spherically symmetric, asymptotically flat solution,

c decreases monotonically as we move inwards along the radial direction from infinity. We

assume that the spacetime in the region of interest has no singularities and the scalar fields

lie in a singularity free region of moduli space with a metric which is positive, i.e., all

eigenvalues of the moduli space metric, gij , are positive. For a black hole we show that the

minimum value of c, in the static region, equals the entropy at the horizon.

To prove monotonicity of c it is enough to prove monotonicity of b. Let us define a

coordinate y = −r which increases as we move inwards from the asymptotically flat region.

We see from eq. (3.4), since the eigenvalues of gij > 0, that d2b/dy2 6 0 and so db/dy

must be non-increasing as y increases. Now for an asymptotically flat solution, at infinity

as r → ∞, b(r) → r. This means db/dy = −1. Since db/dy is non-increasing as y increases

this means that for all y > −∞, db/dy < 0 and thus b is monotonic. This proves the

c-theorem.

3.2 Some comments

A few comments are worth making at this stage.

It is important to emphasise that our proof of the c-theorem applies to any spherically

symmetric, static solution which is asymptotically flat. This includes both extremal and

non-extremal black holes. The boundary of the static region of spacetime, where the

killing vector ∂
∂t is time-like, is the horizon where a2 → 0. The c function is monotonically

– 6 –
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decreasing in the static region, and obtains its minimum value on the boundary at the

horizon. We see that this minimum value of c is the entropy of the black hole. We will

comment on what happens to c when one goes inside the horizon towards the end of this

section.

For extremal black holes it is worth noting that the c-function is not Veff itself. At the

horizon, where c obtains its minimum value, the two are indeed equal (up to a constant of

proportionality). This follows from the constraint, eq. (3.3), after noting that at a double

horizon where a2 and a2′ both vanish, Veff(φi
0) = b2

H . But more generally, away from the

horizon, c and Veff are different. In particular, we will consider an explicit example in

appendix A of a flow from infinity to the horizon where Veff does not evolve monotonically.

In the supersymmetric case it is worth commenting that the c-function discussed above

and the square of the central charge agree, up to a proportionality constant, at the horizon

of a black hole. But in general, away from the horizon, they are different. For example in

a BPS extremal Reissner Nordstrom black hole, obtained by setting the scalars equal to

their attractor values at infinity, the central charge is constant, while the Area is infinite

asymptotically and monotonically decreases to its minimum at the horizon.

It is also worth commenting that c′ can vanish identically only in a Robinson-Bertotti

spacetime.4 If c is constant, b is constant. From, eq. (3.4) then φi are constant. Thus Veff

is extremised. It follows from the other Einstein equations then that a(r) = r/b leading to

the Robinson-Bertotti spacetime. From this we learn that a flow from one asymptotically

(in the sense that c′ and all its derivatives vanish) AdS2 × S2 where the scalars are at

one critical point of Veff to an asymptotically AdS2 × S2 spacetime where the scalars are

at another critical point is not possible. Once the scalars begin evolving c′ will became

negative and cannot return to zero.

The c-theorem discussed above is valid more generally than the specific system con-

sisting of gravity, gauge fields and scalars we have considered here. Consider any four-

dimensional theory with gravity coupled to matter which satisfies the null energy condition.

By this we mean that the stress-energy satisfies the condition,

Tµνζ
µζν

> 0, (3.7)

where ζa is an arbitrary null vector. One can show that in such a system the c-theorem is

valid for all static, spherically symmetric, asymptotically flat, solutions of the equations of

motion. To see this, note that from the metric eq. (2.2), it follows that,

− RttG
tt + RrrG

rr = −2a2 b
′′

b
. (3.8)

From Einstein’s equations and the null energy condition we learn that the l.h.s above is

positive, since

− RttG
tt + RrrG

rr = Tµνζµζν > 0 (3.9)

where ζµ = (ζt, ζr) are components of a null vector, satisfying the relations, (ζt)2 =

−Gtt, (ζr)2 = Grr. Thus as long as we are outside the horizon, and a2 > 0, i.e. in any

4By c′ vanishing identically we mean that c′ and all its derivatives vanish in some region of spacetime.
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region of space-time where the Killing vector related to time translations is time-like,

b
′′

< 05 This is enough to then prove the monotonicity of b and thus c. The importance of

the null energy condition for a c-theorem was emphasised in [25].6

In fact the c-theorem follows simply from the Raychaudhuri equation and the null

energy condition. Consider a congruence of null geodesics, where each geodesic has (θ, φ)

coordinates fixed, with, (t, r), being functions of the affine parameter, λ. The expansion

parameter of this congruence is

ϑ =
d ln A

dλ
, (3.10)

where A is the area, eq. (3.6). Choosing in going null geodesics for which dr/dλ < 0 we see

that ϑ < 0 at r → ∞, for an asymptotically flat space-time. Now, Raychaudhuri’s equation

tells us that dϑ
dλ < 0 if the energy condition, eq. (3.7), is met. Then it follows that ϑ < 0

for all r < ∞ and thus the area A must monotonically decrease. The comments in this

paragraph provides a more coordinate independent proof of the c-theorem. Although the

focus of this paper is time independent, spherically symmetric configurations, these com-

ments also suggest that a similar c-theorem might be valid more generally. The connection

between c-theorems and the Raychaudhuri equation was emphasised in [28, 29].

In the higher dimensional discussion which follows we will see that the c function is di-

rectly expressed in terms of the expansion parameter ϑ for radial null geodesics. The reader

might wonder why we have not considered an analogous c function in four-dimensions.

From the discussion of the previous paragraph we see that any function of the form, 1/ϑp,

where p is a positive power, is monotonically increasing in r. However, in an AdS2 × S2

spacetime, ϑ → 0 and thus such a function will blow up and not equal the entropy of the

corresponding extremal black hole.

It seems puzzling at first that a c-function could arise from the analysis of second

order equations of motion. As mentioned in the introduction, the answer to this puzzle lies

in the fact that we were considering solutions which satisfy asymptotically flat boundary

conditions. Without imposing any boundary conditions, we cannot prove monotonicity of

c. But one can use the arguments above to show that there is at most one critical point of

c as long as the region of spacetime under consideration has no spacetime singularities and

also the scalar fields take non-singular values in moduli space. If the critical point occurs

at r = r∗, c monotonically decreases for all r < r∗ and cannot have another critical point.

Similarly, for r > r∗. From the Raychaudhuri equation it follows that the critical point, at

r∗, is a maximum.

Usually the discussion of supersymmetric attractors involves the regions from the hori-

zon to asymptotic infinity. But we can also ask what happens if we go inside the horizon.

This is particularly interesting in the non-extremal case where the inside is a time depen-

dent cosmology. In the supersymmetric case one finds that the central charge (and its

square) has a minimum at the horizon and increases as one goes away from it towards the

5In fact the same conclusion also holds inside the horizon. Now t is space-like and r time-like and

Tµνζµζν = 2a2 b
′′

b
> 0. Since a2 < 0, we conclude that b

′′

< 0. We will return to this point at the end of

the section.
6In [25] this condition is referred to as the weaker energy condition.
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outside and also towards the inside. This can be seen as follows. Using continuity at the

horizon a modulus take the form in an attractor solution,

φ(r) − φ0 ∼ |r − rH |α (3.11)

where α is a positive coefficient and φ0 is the attractor value for the modulus.7 Since

the central charge is minimised by φ0, one finds by expanding in the vicinity of r =

rH , that the central charge is also minimised as a function of r.8 In contrast, the c-

function we have considered here, monotonically decreases inside the horizon till we reach

the singularity. In fact it follows from the Raychaudhuri equation that the expansion

parameter ϑ monotonically decreases and becomes −∞ at the singularity.

4. The c-function in higher dimensions

We analyse higher dimensional generalisations in this section. Consider a system consisting

of gravity, gauge fields with rank q field strengths, F a
m1···mq

, a = 1, . . . N , and moduli

φi, i = 1, . . . n, in p + q + 1 dimensions, with action,

S =
1

κ2

∫

dDx
√
−G

(

R − 2gij(∂φi)∂φj − fab(φ
i)

1

q!
F a

µν...F
b µν...

)

. (4.1)

Take a metric and field strengths of form,

ds2 = a(r)2

(

−dt2 +

p−1
∑

i=1

dy2
i

)

+ a(r)−2dr2 + b(r)2dΩ2
q, (4.2)

F a = Qa
mωq. (4.3)

Here dΩ2
q and ωq are the volume element and volume form of a unit q dimensional sphere

sphere. Note that the metric has Poincaré invariance in p direction, t, yi, and has SO(q)

rotational symmetry. The field strengths thread the q sphere and the configuration carries

magnetic charge. Other generalisations, which we do not discuss here include, forms of

different rank, and also field strengths carrying both electric and magnetic charge.

Define an effective potential,

Veff = fab(φ
i)Qa

mQb
m. (4.4)

Now, as we discuss further in appendix C, it is easy to see that if Veff has a critical

point where ∂φiVeff vanishes, then by setting the scalars to be at their critical values,

φi = φi
0, one has extremal and non extremal black brane solutions in this system with

7We are working in the coordinates, eq. (2.2). These breakdown at the horizon but are valid for r > rH

and also r < rH (where a2 < 0). The solution written here is valid in both these regions; for r = rH we

need to take the limiting value.
8The effective potential Veff in the non-supersymmetric case is similar. As a function of r it attains a

local minimum at the horizon.
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metric, eq. (C.13). For extremal solutions, the near horizon limit is AdSp+1 × Sq, with

metric given by eq. (C.17),

ds2 =
r2

R2

(
−dt2 + dy2

i

)
+

R2

r2
dr2 + b2

HdΩ2
q (4.5)

where

R =

(
p

q − 1

)

bH (4.6)

(bH)2(q−1) =
p

(p + q − 1)(q − 1)
Veff(φi

0). (4.7)

In the extremal case, using arguments analogous to [18] one can show that the AdSp+1×Sq

solution is an attractor if the effective potential is minimised at the critical point φi
0. That

is, for small deviations from the attractor values for the moduli at infinity, there is an

extremal solution in which the moduli are drawn to their critical values at the horizon and

the geometry in the near-horizon region is AdSp+1 × Sq.

We now turn to discussing the c-function in this system. The discussion is motivated

by the analysis in [25] of a c-theorem in AdS space. Our claim is that a c-function for the

system under consideration is given by,

c = c0
1

Ã(p−1)
. (4.8)

Here, c0 is a constant of proportionality chosen so that c > 0. Ã is defined by

Ã = A′

(
a

b
q

p−1

)

(4.9)

where A is defined to be,

A = ln(ab
q

p−1 ), (4.10)

and prime denotes derivative with respect to r. We show below that for any static, asymp-

totically flat solution of the form, eq. (4.2), c, eq. (4.8), is a monotonic function of the

radial coordinate.

The key is once again to use the null energy condition. Consider the RttG
tt − RrrG

rr

component of the Einstein equation. For the metric, eq. (4.2), we get,

− RttG
tt + RrrG

rr = a2

[

−(p − 1)
a
′′

a
− q

b
′′

b

]

= Tµνζ
µζν , (4.11)

where (ζt, ζr) are the components of a null vector which satisfy the relation, (ζt)2 =

−Gtt, (ζr)2 = Grr. The null energy condition tells us that the r.h.s cannot be negative.

For the system under consideration the r.h.s can be calculated giving,

− (p − 1)
a
′′

a
− q

b
′′

b
= 2gij∂rφ

i∂rφ
j. (4.12)

It is indeed positive, as would be expected since the matter fields we include satisfy the

null energy condition.
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From eq. (4.12) we find that

dÃ

dr
= − a

b
q

p−1

[
2

p − 1
gijφ

iφj+

(
q

p − 1
+

q2

(p − 1)2

)(
b′

b

)2
]

, (4.13)

and thus, dÃ
dr 6 0.

Now we turn to the monotonicity of c. Consider a solution which becomes asymp-

totically flat as r → ∞. Then, a → 1, b → r, as r → ∞. It follows then that Ã → 0+

asymptotically. Since, we learn from eq. (4.13) that Ã is a non-increasing function of r it

then follows that for all r < ∞, Ã > 0. Since, a, b > 0, we then also learn from, eq. (4.9),

that A′ > 0 for all finite r.

Next choose a coordinate y = −r which increases as we go in from asymptotic infinity.

We have just learned that dA/dy = −A′ < 0, for finite r. It is now easy to see that

dc

dy
= −(p − 1)

a

b
q

p−1

c
dA

dy

1

Ã2

dÃ

dr
. (4.14)

Then given that a, b > 0, c > 0, and dA/dy < 0, dÃ
dr 6 0, it follows that dc/dy 6 0, so

that the c-function is a non-increasing function along the direction of increasing y. This

completes our proof of the c-theorem.

For a black brane solution the static region of spacetime ends at a horizon, where a2

vanishes. The c-function monotonically decreases from infinity and in the static region

obtains its minimum value at the horizon. For the extremal black brane the near horizon

geometry is AdSp+1 × Sq. We now verify that for p even the c function evaluated in the

AdSp+1 × Sq geometry agrees with the conformal anomaly in the boundary Conformal

Field Theory. From eq. (4.5) we see that in AdSp+1 × Sq,

a′ = 1/R (4.15)

b =
q − 1

p
R. (4.16)

where R is the radius of the AdSp+1. Then

c ∝ Rp+q−1

Gp+q+1
N

∝ Rp−1

Gp+1
N

(4.17)

where Gp+q+1
N , Gp+1

N refer to Newton’s constant in the p+ q +1 dimensional spacetime and

the p + 1 dimensional spacetime obtained after KK reduction on the Sq respectively. The

right hand side in eq. (4.17) is indeed proportional to the value of the conformal anomaly in

the boundary theory when p is even [30]. By choosing c0, eq. (4.8), appropriately, they can

be made equal. Let us also comment that c in the near horizon region can be expressed in

terms of the minimum value of the effective potential. One finds that c ∝ (Veff(φi
0))

(p+q−1)
2(q−1) ,

where the critical values for the moduli are φi = φi
0.

A few comments are worth making at this stage. We have only considered asymptoti-

cally flat spacetimes here. But our proof of the c-theorem holds for other cases as well. Of
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particular interest are asymptotically AdSp+1×Sq spacetime. The metric in this case takes

the form, eq. (4.5), as r → ∞. The proof is very similar to the asymptotically flat case.

Once again one can argue that A′ > 0 for r < ∞ and then defining a coordinate y = −r

it follows that dc/dy is a non-increasing function of y. The c-theorem allows for flows

which terminate in another asymptotic AdSp+1 × Sq spacetime. The second AdSp+1 × Sq

space-time, which lies at larger y, must have smaller c. Such flows can arise if Veff has more

than one critical point. It is also worth commenting that requiring that c is a constant in

some region of spacetime leads to the unique solution (subject to the conditions of a metric

which satisfies the ansatz, eq. (4.2)) of AdSp+1 × Sq with the scalars being constant and

equal to a critical value of Veff .

We mentioned above that our definition of the c function is motivated by [25]. Let us

make the connection clearer. The c-function in9 [25, 26] is defined for a spacetime of the

form,

ds2 = e2A
∑

µ,ν=0,...p

ηµνdyµdyν + dz2, (4.18)

and is given by

c =
c0

(dA/dz)p−1
. (4.19)

Note that eq. (4.18) is the Einstein frame metric in p + 1 dimensions. Starting with the

metric, eq. (4.2), and Kaluza-Klein reducing over the Q sphere shows that A defined in

eq. (4.10) agrees with the definition eq. (4.18) above and dA/dz agrees with Ã in eq. (4.9).

This shows that the c-function eq. (4.8) and eq. (4.19)are the same.

The monotonicity of c follows from that of Ã, eq. (4.9). One can show that for a con-

gruence of null geodesics moving in the radial direction, with constant (θ, φ), the expansion

parameter ϑ is given by,

ϑ =

(
a′

a
+

q

p − 1

b′

b

)

. (4.20)

Raychaudhuri’s equation and the null energy condition then tells us that dϑ
dr < 0. However,

in an AdSp+1×Sq spacetime ϑ diverges, this behaviour is not appropriate for a c-function.

From eq. (4.9) we see that Ã differs from ϑ by an additional multiplicative factor, a/b
q

p−1 .

This factor is chosen to preserve monotonicity and now ensures that c goes to a finite

constant in AdSp+1 × Sq spacetimes. A similar comment also applies to the c-function

discussed in [25].

5. Concluding comments

In two-dimensional field theories it has been suggested sometime ago [31 – 33] that the c

function plays the role of a potential, so that the RG equations take the form of a gradient

flow,

βi = − ∂c

∂gi
,

9Another c-function has been defined in [27].
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where c is the Zamolodchikov c-function [34]. This phenomenon has a close analogy in

the case of supersymmetric black holes, where the radial evolution of the moduli is de-

termined by the gradient of the central charge in a first order equation. In contrast, the

c-function we propose does not satisfy this property in either the supersymmetric or the

non-supersymmetric case. In particular, in the non-supersymmetric case the scalar fields

satisfy a second order equation and in particular the gradient of the c-function does not

directly determine their radial evolution.

It might seem confusing at first that our derivation of the c-theorem followed from the

second order equations of motion. The following simple mechanically model is useful in

understanding this. Consider a particle moving under the force of gravity. The c-function

in this case is the height x which satisfies the condition

ẍ = −g, (5.1)

where g is the acceleration due to gravity. Now, if the initial conditions are such that

ẋ < 0 then going forwards in time x will monotonically decrease. However, if the direction

of time is chosen so that ẋ > 0, going forward in time there will be a critical point for x

and thus x will not be a monotonic function of time. In this case though there can be at

most one such critical point.

While the equations of motion that govern radial evolution are second order, the at-

tractor boundary conditions restrict the allowed initial conditions and in effect make the

equations first order. This suggests a close analogy between radial evolution and RG flow.

The existence of a c-function which we have discussed in this paper adds additional weight

to the analogy. In the near-horizon region, where the geometry is AdSp+1 × Sq, the rela-

tion between radial evolution and RG flow is quite precise and well known. The attractor

behaviour in the near horizon region can be viewed from the dual CFT perspective. It

corresponds to turning on operators which are irrelevant in the infra-red. These operators

are dual to the moduli fields in the bulk, and their being irrelevant in the IR follows from

the fact that the mass matrix, eq. (2.6), has only positive eigenvalues.

It is also worth commenting that the attractor phenomenon in the context of black

holes is quite different from the usual attractor phenomenon in dynamical systems. In the

latter case the attractor phenomenon refers to the fact that there is a universal solution

that governs the long time behaviour of the system, regardless of initial conditions. In the

black hole context a generic choice of initial conditions at asymptotic infinity does not lead

to the attractor phenomenon. Rather there is one well behaved mode near the horizon and

choosing an appropriate combination of the two solutions to the second order equations

at infinity allows us to match on to this well behaved solution at the horizon. Choosing

generic initial conditions at infinity would also lead to triggering the second mode near the

horizon which is ill behaved and typically would lead to a singularity.

Finally, we end with some comments about attractors in cosmology. Scalar fields

exhibit a late time attractor behaviour in FRW cosmologies with growing scale factor

(positive Hubble constant H). Hubble expansion leads to a friction term in the scalar field

equations,

φ̈ + 3Hφ̇ + ∂φV = 0. (5.2)
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As a result at late times the scalar fields tend to settle down at the minimum of the potential

generically without any precise tuning of initial conditions. This is quite different from the

attractor behaviour for black holes and more akin to the attractor in dynamical systems

mentioned above.

Actually in AdS space there is an analogy to the cosmological attractor. Take a scalar

field which has a negative (mass)2 in AdS space (above the BF bound). This field is dual

to a relevant operator. Going to the boundary of AdS space a perturbation in such a field

will generically die away. This is the analogue of the late time behaviour in cosmology

mentioned above. Similarly there is an analogue to the black hole attractor in cosmology.

Consider dS space in Poincaré coordinates,

ds2 = −dt2

t2
+ t2dx2

i , (5.3)

and a scalar field with potential V propagating in this background. Notice that t → 0 is

a double horizon. For the scalar field to be well behaved at the horizon, as t → 0, it must

go to a critical point of V , and moreover this critical point will be stable in the sense that

small perturbations of the scalar about the critical point will bring it back, if V ′′ < 0 at

the critical point, i.e., if the critical point is a maximum. This is the analogue of requiring

that Veff is at a minimum for attractor behaviour in black hole.10 It is amusing to note

that a cosmology in which scalars are at the maximum of their potential, early on in the

history of the universe, could have other virtues as well in the context of inflation.
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A. Veff need not be monotonic

In this appendix we construct an explicit example showing that Veff as a function of the

radial coordinate need not be monotonic. The basic point in our example is simple. The

scalar field φ is a monotonic function of the radial coordinate, r, eq. (2.2) . But the effective

potential is not a monotonic function of φ, and as a result is not monotonic in r.

We work with the following simple Veff to construct such a solution,

Veff = V01 +
1

2
m2(φ − φ01)

2, φ 6 φa (A.1)

Veff = V02 −
1

2
m2(φ − φ02)

2, φ > φa. (A.2)

At φa, the potential is continuous, giving the relation,

V02 = V01 +
1

2
m2(φ − φ01)

2 +
1

2
m2(φ − φ02)

2. (A.3)

10The sign reversal is due to the interchange of a space and time directions.
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φ02

V eff 
(φ)

V

V

φ01

02

01

φ
a

φ

Figure 1: The effective potential Veff as a function of φ

We will take the potential as being specified by V01, φ01, φ02, φa,m
2 with V02 being deter-

mined by eq. (A.3). The effective potential is given in figure 1. Note that with a minimum

at φ01 and a maximum at φ02, Veff , is a non-monotonic function of φ. Note also that the

the first derivative of the potential has a finite jump at φ = φa. Since the equations of

motion are second order this means the scalar fields and the metric components, a, b, and

their first derivatives will be continuous across φa. The finite jump is thus mild enough for

our purposes.

The attractor value for the scalar is φ01. By setting φ = φ01, independent of r, we get

an extremal Reissner Nordstrom black hole solution. The radius of the horizon, rH in this

solution is given by

r2
H = V01. (A.4)

This solution is our starting point. We now construct the solution of interest in perturbation

theory, following the analysis in [18], whose conventions we also adopt. For the validity of

perturbation theory, we take, φa−φ01 ¿ 1, and also φ02−φ01 ¿ 1. The non-monotonicity of

the potential then comes into play even when the scalar field makes only small excursions

around the minimum φ01. In addition we will also take, 4m2

r2
H

< 1, it then follows that

V02−V01
V01

¿ 1.

We construct the solution for the scalar field to first order in perturbation theory below.

In the solution the scalar field is a monotonic function of r. This allows the solution to be

described in two regions. In region I, φ01 6 φ 6 φa, it is given by,

φ = φ01 + A(r − rH)α, (A.5)
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α =
1

2

(√

1 +
4m2

r2
H

− 1

)

. (A.6)

And in region II, φ > φa, it is given by,

φ = φ02 + B1(r − rH)(−γ1) + B2(r − rH)(−γ2), (A.7)

γ1 =
1

2

(

1 +

√

1 − 4m2

r2
H

)

, (A.8)

γ2 =
1

2

(

1 −
√

1 − 4m2

r2
H

)

. (A.9)

The boundary between the two is at ra, where φ = φa, and φ and its first derivative with

respect to r are continuous. The continuity conditions allow us to solve for B1, B2, in terms

of A, and also determine ra in terms of A. The solution is thus completely specified by the

constant, A. ra satisfies the relation,

(

1 − rh

ra

)α

=
(φa − φ01)

A
. (A.10)

We will omit some details of the subsequent analysis. One finds that as long as

(φa − φ01) < A <

(
γ1

γ2

) α
γ1−γ2

(φa − φ01), (A.11)

the scalar field monotonically evolves with r and transits from region I to region II as r

increases. Now we see from eq. (A.7) that if B1 + B2 > 0, φ(r → ∞) > φ02. This ensures

that Veff is not a monotonic function of r. It will first increases and then decreases as r

decreases from ∞ to rH . The condition, B1 + B2 > 0, gives rise to the condition,

(φ02 − φa) < α
[1 − (1 − rH

ra
)γ1−γ2 ]

[γ1 − γ2(1 − rH

ra
)γ1−γ2 ]

(φa − φ01). (A.12)

Having picked a value of A that lies in the range, eq. (A.11), we can then determine ra

from eq. (A.10). As long as φ02 is small enough and satisfies condition eq. (A.12) we see

that the asymptotic value of φ(r → ∞) > φ02. It then follows, as argued above, that in

the resulting solution Veff is not a monotonic function of r.

We end with three comments. First, we have not obtained the the corrections to the

metric components a, b in perturbation theory here. But this can be done following the

analysis in [18]. One finds that the corrections are small. Second, the c-function is of

course monotonic as a function of the radial coordinate in this example too. The area of

the extremal Reissner Nordstrom black hole monotonically decreases and this is true even

after including the small corrections in perturbation theory. Finally, we have not obtained

the effective potential above starting with gauge fields coupled to moduli. In fact, for

dilaton-like couplings, the simplest example we have been able to construct, where Veff has

multicritical points with some minimal and maxima, involves two moduli, a dilaton and

axion, and two gauge fields. Our discussion above has a close parallel in this case as well
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(with both dilaton and axion excited) and we expect, by dialling the charges and couplings,

that the analogue of condition eq. (A.12) can be met leading to solutions where Veff evolves

non-monotonically with the radial coordinate r.

B. More details in higher dimensional case

The equations of motion that follow from the action, eq. (4.1), are,

Rµν − 2∂µφi∂νφi =
q

q!
fab(φi)F

a
µλ....F

bλ...
ν − q − 1

(p + q − 1)q!
Gµνfab(φi)F

a
µν....F

b µν...

1√
−G

∂µ(
√
−G∂µφi) =

1

4q!
∂ifab(φi)F

a
µν....F

b µν...

∂µ(
√
−Gfab(φi)F

bµν) = 0. (B.1)

Substituting for the gauge fields from eq. (4.3) we learn that Rtt = a2

b2 ( q−1
p )Rθθ, which

yields the equation,

pb2

(

pa
′2

+
qaa

′

b
′

b
+ aa

′′

)

= (q − 1)
(

(q − 1) − (p + 1)aba
′

b
′ − a2

(

(q − 1)b
′2 + bb

′′

))

(B.2)

where we have computed the curvature components using the metric, eq. (4.2). The Rrr −
Gtt

Grr Rtt component of the Einstein equation gives

(p − 1)
a
′′

a
+

qb
′′

b
= −2gij∂rφ

i∂rφ
j. (B.3)

Also the Rrr component itself yields a first order “energy” constraint,

(p(p−1)b2a
′2+2pqaba

′

b
′

+q(q−1)(−1+a2b
′2)) = 2a2b2gij∂rφ

i∂rφ
j−Veff(φi)b

−2(q−1) (B.4)

where Veff is defined in eq. (4.4).

The equation of motion of the scalar field is given by,

∂r(a
p+1bq∂rgijφ

j) =
ap−1∂iVeff

4bq
. (B.5)

Setting φi = φi
0, where φi

0 is a critical point of Veff one finds that AdSp+1 × Sq is a

solution of these equations with metric, eq. (4.5).

C. Higher dimensional p-brane solutions

Fixing the scalars at their attractor values, as described in section 4, we are left with the

action

S =
1

κ2

∫

dDx
√
−G

{

R − 1

q!

∑

a

F a
(q)

2

}

(C.1)

where fab has been diagonalised and the attractor values of the scalars have been absorbed

into the a redefinition of the gauge charges, Qa. We denote the new charges as Q̄a.

– 17 –



J
H
E
P
0
2
(
2
0
0
6
)
0
5
3

To find solutions, we can dimensionally reduce this action along the brane and use

known blackhole solutions. To this end take the metric

ds2 = eλρdŝ2
︸ ︷︷ ︸

t,r,ω1,...,ωq

+ e
−

“

q

p−1

”

λρ
dy2

︸ ︷︷ ︸

i1...ip−1

(C.2)

where

λ = ±
√

2(p − 1)

q(p + q − 1)
(C.3)

then

R = e−λρ

(

R̂ − λ2∇̂2ρ − 1

2
(∇̂ρ)2

)

(C.4)

where R̂ and ∇̂ are respectively the Ricci scalar and covariant derivative for dŝ2. The

coefficient, λ, has been fixed by requiring that, we remain in the Einstein frame, and that

the kinetic term for ρ has canonical normalisation. Upon neglecting the boundary term,

the action becomes

S =
V(p−1)

κ2

∫

d(q+2)x

√

−Ĝ

{

R̂ − 1

2

(

∇̂ρ
)2

− 1

q!
eβρ

∑

a

(

F̂ a
(q)

)2
}

(C.5)

where

β = −(q − 1)λ. (C.6)

The black hole solution to eq. (C.5) is [35, 36]:

dŝ2 = − (f+) (f−)1−γ̂(q−1) dt2 + (f+) (f−)γ̂−1 du2 + (f−)γ̂ u2dΩ2
q (C.7)

eλρ = (f−)−γ̂ (C.8)

f± =

(

1 −
(u±

u

)q−1
)

(C.9)

where

γ̂ =
2(p − 1)

(q − 1)p
(C.10)

with

F̂ a = Q̄aωq (C.11)
∑

a

(Q̄a)
2

=
γ̂(q − 1)3(u+u−)q−1

β2
. (C.12)

Using eq. (C.2) we find the solution to the original action, eq. (C.1), is

ds2 = (f−)
2
p

(

−
(

f+

f−

)

dt2 + dy2

)

+ (f+f−)−1 du2 + u2dΩ2
q. (C.13)
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So finally, the extremal solution is

ds2 = (f)
2
p

(
−dt2 + dy2

)
+ (f)−2 du2 + u2dΩ2

q (C.14)

f =

(

1 −
(

bH

u

)q−1
)

(C.15)

where bH = u±. Now we take the near horizon limit,

u
ε→0−→ bH + εR

( r

R

)p
, (C.16)

with t and y rescaled appropriately, which indeed gives the near horizon geometry AdSp+1×
Sq:

ds2 =
r2

R2

(
−dt2 + dy2

)
+

R2

r2
dr2 + b2

HdΩ2
q (C.17)

where

R =

(
p

q − 1

)

bH (C.18)

and

Veff
eq.(C.12)

=
(p + q − 1)(q − 1)

p
(bH)2(q−1). (C.19)
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